Demonstrating a Dual Heat Exchanger Rack Cooler "Tower" Water for IT Cooling

H. Coles, S. Greenberg

contact: hccoles@lbl.gov

October 24, 2012 – Silicon Valley Leadership Group

Data Center Efficiency Summit

AMD, Sunnyvale California

Project Overview

PI: W. F. Tschudi

Researchers: Henry Coles, Steve Greenberg

Sponsors: California Energy Commission (CEC)

Partners: APC by Schneider Electric

Synapsense

LBNL Data Center – Building 50

Project Term: Concept July 2009/start July 2010-end Oct 2012

Presentation

- Goal/Objectives
- Background/Methods
- Cooling Design Concept
- Reverse Engineering Construct Model
- Forward Engineering Calculate Results
- Conclusions

Project Goal/Objective

Goal: Demonstrate the benefits of cooling IT equipment using high temperature water using a unique cooling unit.

Objectives:

- Measure performance
- Develop a predictive model
- Calculate Metrics

Background / Methods

- 1. Discussed concept with APC
- 2. APC constructs prototype
- 3. Install Unit at LBNL Data Center
- 4. Instrument Heat Exchangers, Electrical Power and Air Temperature
- 5. Record Thermal/Power Performance
- 6. Reverse Engineer Heat Exchanger/Construct Closed Form Solution
- 7. Calculate Metrics/Plot Results /Draw Conclusions

APC Prototype Dual Hex Cooler

Demonstration Installation

Function Concept

Data Collection

Reverse Engineering Problem

Heat Exchanger Performance
Not Provided

need closed form model

Fit to Hex Theory: Cross Flow, One Fluid Mixed, Other Unmixed

C = mass flow rate x heat capacity

If Cmax = Cmixed (air)
$${}^{1}E = 1 - \exp(-\mathsf{Tau} * (C_{\mathsf{max}} / C_{\mathsf{min}}))$$

$$\mathsf{Tau} = 1 - \exp(-\mathsf{N}_{\mathsf{tu}} * (C_{\mathsf{min}} / C_{\mathsf{max}}))$$

$${}^{1}E = (C_{\mathsf{max}} / C_{\mathsf{min}}) * (1 - \exp(-\mathsf{Tau'} * (C_{\mathsf{min}} / C_{\mathsf{max}})))$$

$$\mathsf{Tau'} = 1 - \exp(-\mathsf{N}_{\mathsf{tu}})$$

$${}^{1}N_{\mathsf{tu}} = AU/C_{\mathsf{min}}$$

$$\mathsf{solve \ for \ } AU$$

$$\mathsf{q \ (heat \ transferred)} = E \ C_{\mathsf{min}} (\mathsf{T}_{\mathsf{hot \ in}} - \mathsf{T}_{\mathsf{cold \ out}})$$

$$\mathsf{calculate \ exiting \ temperatures} (\mathsf{T}_{\mathsf{hot \ out}}, \ \mathsf{T}_{\mathsf{cold \ out}})$$

¹Kays, W. M. and A. L. London. 1964. Compact Heat Exchangers, 2nd Edition. Stanford University. Page 19

Check Closed Form Solution

Heat Exchanger Reverse Engineering Results

Results (forward engineering)

Results (cont.)

Infrastructure Energy Breakdown - Example: Dual Hex Configuration

Supply Treated Water (68°F) as Needed to 24 gpm, Add Chilled Water (45°F) as Needed to Meet Setpoint Server = 100 cfm / kW, 72°F Server Air Inlet

Compare to Chill-Off 2 Devices

Conclusions

- Warmer (tower/economizer) water provides 30 to 50 % cooling efficiency improvements, compared to water supplied using compressor-based (chiller) cooling.
- Design minimizes compressor based cooling (<u>individual localized economizer, lower pPUE</u>)
- Fan energy has a significant effect on efficiency at high air flow rates.
- The prototype cooling unit compared favorably (20-30 percent improvement) to similar devices evaluated in a past PIER demonstration project (Chill-Off 2)

End Questions?

Backup Slides

Case 1: Dual Hex Operation Infrastructure Component Contribution

Tower Water Cooling - Chilled Water Cooling Added as Needed Server = 100 cfm/kW, 72°F Air Inlet Temperature Setpoint

pPUE Comparison of 4 Configurations One or Two Heat Exchangers in Series, Tower and Chilled Water Supply Servers = 100 cfm/kW, Server Air Inlet = 72°F, Tower Water = 68°F, Chilled Water = 45°F

Plant Model

kW / ton vs. supplied water temperature

COP Metric Definition

COP [kW_{thermal} / kW_{elec.}] = cooling provided / power needed

cooling provided (kW) = treated water cooling + chilled water cooling - APC Unit Power

